PFAS IOI

Regional Science Council – Science Academy

March 12, 2019 Kathy Davies, Dawn Ioven, HSCD (SEMD) Roger Reinhart, Rick Rogers, WPD (WD)

PFOA (credit - NIEHS)

PFAS Overview

- Chemistry
- Characteristics and Usage
- Fate and Transport
- Toxicology
 - Human health
 - Ecological

- Drinking Water Issues
 - Sampling and laboratory methods
 - Treatment Options
- Questions and Discussion
- Resources

S

Per- and Polyfluoroalkyl Substances (PFAS)

- Prevalent
 - More than 5,000 synthetic fluorinated organic chemicals
 - Used for many years as surfactants to repel dirt, oil and water
- C-F bond one of the strongest in nature
 - Persistent and Mobile
 - Bio accumulative and potentially wide range of adverse human health effects
 - Resistant to chemical/biochemical reactions
 - Soluble and mobile in water at low concentrations

ĸ

Perfluoroalkyl Acids (PFAAs)
Carboxylic Acids and Carboxylates (PFCAs) and Perfluoroalkane Sulfonic Acids and Sulfonates (PFSAs)

PFOA - perfluorocctanoic acid

PFOS - perfluorocctanesulfonic acid

Perfluoroalkyl Acids

PFAAs
PFSAs (sulfonates)
PFCAs (carboxylates)

- CF 'tail': hydrophobic
 - Longer is more hydrophobic
 - Longer transports slower
- Functional group 'head'
 - Water soluble
 - PFCAs transport faster than same length C chain PFSAs
- Few engineered or environmental processes degrade PFAAs

ĸ.

Per- vs. Poly- fluoroalkyl Substances

Perfluoroalkyl sulfonate (PFSA) Polyfluoroalkyl Substance

$$F_{3}$$
C F_{2} F_{2} F_{2} F_{2} F_{2} F_{3} F_{4} F_{5} $F_{$

SPA Shifted States invironmental Protection

What is a Precursor?

- Polyfluoroalkyl substances that can undergo transformation to form perfluoroalkyl acids
- Mechanisms include
 - hydrolysis, photolysis and oxidation (air exposure and oxidative remediation for other chemicals may convert precursors to PFAAs over time or during treatment)
 - aerobic biologically mediated
- End products include PFOA and PFOS
- Example: 8:2 Fluorotelomer alcohol
 - Degrades environmentally to PFOA

M

Manufacturing History of Some PFAS

PFAS1	Development Time Period							
	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s
PTFE		Non-Stick Coalings			Water stoof Fabrica			
PFOS								U.S. Reduction of PEOS, PEOA PENA (and other select PEAS)
PFOA				dective atings				
PFNA						Architectural	Resins	
Fluoro- telomers						Facility of the F	ens.	Predominación ormetología
Dominant Process ³		Electrochem	rical Fluorinat	tion (ECF)				Fluoro- telomerization (shorter chain ECF)
Pre-Invention of Chemistry / Intel Common System is / Common call Products Introduced solution and Used								

- Notes:

 1. This table includes fluoropolymers, PFAAs, and fluorotelomers, PTFE (polytetrafluoroethylene) is a fluoropolymer. PFOS, PFOA, and PFNA (perfluorononancic acid) are PFAAs.

 2. Refer to Section 3.4.

 3. The dominant manufacturing process is shown in the table; note, however, that ECF and fluorotelomerization have both been, and continue to be, used for the production of select PFAS.

Sources: Prevedouros et al. 2006, Concawe 2016; Chemours 2017; Gore-Tex 2017; US Naval Research Academy 2017

ITRC, November 2017

Characteristics of PFAS

Performance

- Water and Oil resistant -> Lower surface tension of water
- Powerful wetting agents
- Chemically stable to heat, strong acids, oxidizing and reducing agents and concentrated alkalis and biodegradation

Effects

- Improved wetting, spreading, foam generation
- Reduced water spotting; smaller gas bubbles and droplets
- Enhanced liquid penetration
- Stability

Types of Consumer Products Using Coating to Repel Water, Oil and Stains

* Textiles and Leather

- Protective clothing, carpets, upholstery; porous concrete, grout, tile, etc. surfaces
- Paper Products
 - Cardboard, Carbonless forms, pizza boxes, fast food wrappers, microwave popcorn bags
- Personal Products

Industrial Usage

- Surfactant, corrosion prevention, mechanical wear reduction
 - Paints and Cleaners; Metal Plating and Etching
 - Mist suppressant for Cr, Cu, Ni and Sn electroplating; electroless plating of Cu and Ni-B

- Photolithography, Semiconductor Industry
 - Anti-reflective coatings, etchants

PFAS Usage (cont'd)

- Manufacturing of plastics and fluoropolymers, resins
 - Emulsion polymerization aids; used in coatings
 - Industrial surfactants, resins, molds and plastics
- Coating and insulation
 - Wire manufacturing; non-stick cooking surfaces
- Dispersant, surface tension lowering and wetting agent
 - Lubricating greases, herbicides and insecticides
 - Floor cleaners and polishers (removes and prevents soil adhesion); coating of porous concrete, grout, tile, etc. surfaces

Firefighting Foams

- Formulated to
 - float on flammable liquids
 - form vapor barrier
 - cool to prevent reignition
- Aqueous Film Forming Foam (AFFF)
 - Fluorinated surfactants lower surface tension of water and form film on fuel
- Mix foam concentrate with water to make foam
- Foam solution is aerated at nozzle
- Thousands of gallons may be applied per event

Fate and Transport of PFAS

- Chemistry is COMPLEX!
- Fate
 - Abiotic and biotic transformation of precursors
- Transport
 - Moves with groundwater, into/out of surface water
 - Deposits on and leaches from soils/sediments
 - Can move in air by volatility, particulate dispersion, wind carried foam, stack emissions

Understanding PFAS Fate and Transport NEW W.A. 2016

PFAS Contributors and Contamination Routes

- Industrial
 - Manufacturing
 - Use in products; mist suppression in plating facilities
 - Wastewater, including discharge to surface water; air deposition
- AFFF
 - * FTAs, equipment test areas, crash/fire sites, storage areas
 - Fuel farms or other needed fire retardant systems
 - * Soil, groundwater, wastewater, surface water, air movement/deposition
- Landfill leachate; Wastewater Treatment Plants
 - Groundwater, surface water, wastewater
- Biosolids land application
 - » Soil, groundwater

u2

PFAS Transport

Mobility is Complex!

- Shorter chain lengths usually faster than long chain lengths
- Carboxylates move faster than sulfonates
- Influencing Factors:
 - Ionic or neutral state (anions > zwitterions > cations (latter can remain in source area))
 - » pH (more acidic increases retardation)
 - * TOC (but do not fit traditional Koc-based sorption isotherm)
 - Presence of polyvalent cations (e.g., Ca+2)
 - Iron oxides (increase retardation)
 - Ionic strength (greater concentration of ions increases retardation; e.g., near salt water)
 - Remediation such as chemical oxidation alters transport with geochemistry changes (pH or cations) and can transform precursors to PFAAs

Status of PFAS

- 2000: 3M voluntary phase out of perfluorooctanyl chemistries (e.g., PFOS, PFHxS, PFOA) by 2008
- 2006: EPA PFOA Stewardship Program
 - Remaining 8 major manufacturing companies committed to reduce PFOA and other longer chain PFCAs by 2015
- Replacement technologies
 - Reformulation
 - Shorter chain PFAS
 - Information is limited
 - Most not detected by standard methods
 - Treatment may not be as effective as for longer chains

w

PFAS Overview

- Overview
 - Chemistry
 - Environmental Concerns
 - Characteristics and Usage
- Fate and Transport
- Toxicology

W

PFOA & PFOS

Most extensively produced and studied PFAS

PFOA (perfluorooctanoic acid)

DuPont primary manufacturer

Teflon, Stainmaster, Scotchguard

Voluntary phase-out in 2006

PFOS (perfluorooctane sulfonate)

3M primary manufacturer

Aqueous Film Forming Foam

Voluntary phase-out between 2000 & 2002

STPA Syntage Protection

19

C8 compounds

PFOS-based AFFF is used to extinguish flammable liquid fires \square often found near fire-training areas. Other releases: PFAS production/manufacturing facilities, tank and supply line leaks.

GenX

Used in the manufacturing process for high-performance polymers:

Cables

Non-stick coatings for cookware

Laptops
Cell phones

Introduced by DuPont in 2008/2009 to replace PFOA

C6

In 2008, EPA received chemical notices under TSCA for two GenX substances: HFPO and HFPO ammonium salt HFPO = Hexafluoropropylene oxide dimer acid

PFAS Properties

Man-made compounds
Repel water and lipids
Stable, fully fluorinated carbons
Resist environmental degradation
Very low volatility
Water soluble → migration from soil to gw → distant transport

Highly persistent in the environment. Ultimate fate: sw

d States Inmental Protection Human Routes of Exposure

Ingestion of contaminated water and food

Ground water contamination due to spills and fire-fighting applications

Significant bioaccumulation in fish

Crops: uptake in some root vegetables, aerial deposition on crop surfaces

Food stored in PFAS-containing packaging

Inhalation of airborne particulate

PFAS half-life in humans: 2 to 9 years

PFAS-containing particulate quickly settles to the ground. Volatility is low.

Studies in animals indicate that dermal toxicity is low.

Half-life = the amount of time it takes for the concentration of a chemical to decline by $\frac{1}{2}$ through biological elimination processes.

PFOA = 2 - 4 yrs; PFOS = 5 - 6 yrs; GenX = unknown, but probably less than PFOA/PFOS due to shorter chain, but persistence and toxicity is probably similar.

PFOA Toxicity

Probable link to carcinogenicity in humans

Kidney

Testicular

Probable link to non-cancer effects in humans

High cholesterol

Ulcerative colitis

Thyroid disease

Pregnancy-induced hypertension

C8 Study: releases of PFOA in Parkersburg, WV (Washington Works Plant) from the 1950s to the early 2000s. Exposure and health studies conducted 2005 – 2013.

Interviews, questionnaires, and blood samples collected from 69,000 people living near the plant. Findings presented in slide. Resulted in \$670 million settlement by DuPont to impacted individuals.

Make mienmental Protection Agency

PFOS Toxicity

- Suggestive evidence of carcinogenicity in rats
 - liver, thyroid, mammary
- Non-cancer critical effects in lab animals
 - Reproductive & developmental effects, liver & kidney toxicity, immune suppression
- Non-cancer findings in humans
 - High cholesterol, low birth weight, immune suppression, thyroid hormone disruption

It alt € mienmental Protection Agency

GenX Toxicity

- Limited data, derived solely from experimental studies in lab animals
 - ▼ Tumors in pancreas, liver, & testes
 - Kidney & liver disease/degeneration
 - Reproductive effects: uterine polyps, early birth, lower fetal weight, fetal skeleton deformation, delayed puberty

High-dose exposures to lab animals in an effort to extrapolate potential toxicity in humans.

PFAS Ecological Toxicity

Acknowledgement

Eco slides were created by Kimberly Plank, Ph.D., of R3's Biological Technical Assistance Group (BTAG).

Disclaimer

I condensed Kimberly's slides for this presentation and take full responsibility for any butchering that occurred in the transition.

⁻ Receptors include plants (terrestrial & aquatic) and animals (terrestrial, & aquatic), including insects.

PFAS Ecological Concerns & Toxicity

• Readily bioavailable
• Bioaccumulate & biomagnify*
• Cause detrimental effects
• Relevant tox endpoints:

Reproduction

Growth

Mortality

Potestion

28

*Simple, but excellent graphic in next slide. Eco receptors should be considered in PFAS risk assessments.

PFAS Triggers / Clean-Up Goals

Lifetime Health Advisory
70 ppt for PFOA/PFOS in public drinking supplies
Developed by EPA's Office of Water (May 2016)

Other (sometimes lower) values are out there
State-promulgated levels for drinking water
ATSDR risk levels for PFOA & PFOS

1 ppt is equivalent to three seconds out of every hundred thousand years. Values differ due to differences in interpreting critical tox studies, exposure considerations, level of tolerable risk, etc.

Catel invieonmental Protection Agency

PFAS Issues

- Highly desirable commercial applications
- Sample collection & analyses
 - To avoid cross-contamination, collection & analyses requirements are stringent
 - Not many labs are set-up to perform PFAS analyses → lab shortage, long wait times
 - Lack of analytical and data validation protocols for media other than drinking water

K

PFAS compounds are very effective at resisting water, grease, and stains.

PFAS Issues
(cont.)

Water treatment
Limited options available (GAC)
Treatment to remove PFOA/PFOS appears to be ineffective for GenX
There are so many PFAS that we know nothing about

Treatment to remove PFOA/PFOS appears to be ineffective for GenX.

Solid Invieonmental Protection Agency

Path Forward

- ORD evaluating toxicity of other PFAS
- Improving analytical methods and scope
- Developing multi-lab validation methods
- EPA PFAS Management Plan
 - Begin MCL process for PFOA & PFOS
 - Haz substance designation for PFOA & PFOS
 - Enforcement, monitoring, research, and risk communication

PFAS Overview

- Chemistry
- Characteristics and Usage
- Fate and Transport
- Toxicology
 - Human health
 - Ecological

- Drinking Water Issues
 - Sampling and laboratory methods
 - Treatment Options
- Questions and Discussion
- Resources

